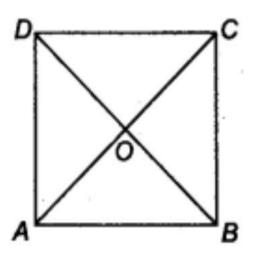
Ex-8.1 solved exercise

Quadrilaterals By- Ashish jha

Q.4. Show that the diagonals of a square are equal and bisect each other at right angles.

Solution:

Let ABCD be a square such that its diagonals AC and BD intersect at O.



(i) To prove that the diagonals are equal, we need to prove AC = BD.

In \triangle ABC and \triangle BAD, we have

AB = BA [Common]

BC = AD [Sides of a square ABCD]

 \angle ABC = \angle BAD [Each angle is 90°]

∴ ∆ABC ≅ ∆BAD [By SAS congruency]

AC = BD [By C.P.C.T.] ...(1)

(ii) AD || BC and AC is a transversal. [: A square is a parallelogram]

 \therefore \angle 1 = \angle 3

[Alternate interior angles are equal]

Similarly, $\angle 2 = \angle 4$

Now, in $\triangle OAD$ and $\triangle OCB$, we have

AD = CB [Sides of a square ABCD]

 $\angle 1 = \angle 3$ [Proved]

 $\angle 2 = \angle 4$ [Proved]

∴ ∆OAD ≅ ∆OCB [By ASA congruency]

 \Rightarrow OA = OC and OD = OB [By C.P.C.T.]

i.e., the diagonals AC and BD bisect each other at O.(2)

(iii) In \triangle OBA and \triangle ODA, we have

OB = OD [Proved]

BA = DA [Sides of a square ABCD]

OA = OA [Common]

∴ ∆OBA ≅ ∆ODA [By SSS congruency]

- \Rightarrow \angle AOB = \angle AOD [By C.P.C.T.] ...(3)
- ∴ ∠AOB and ∠AOD form a linear pair.
- \therefore ∠AOB + ∠AOD = 180°
- \therefore \angle AOB = \angle AOD = 90° [By(3)]
- \Rightarrow AC \perp BD ...(4)

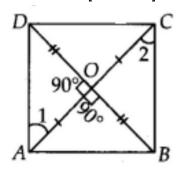
From (1), (2) and (4), we get AC and BD are equal and bisect each other at right angles.

Q.5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution:

Let ABCD be a quadrilateral such that diagonals AC and BD are equal and bisect each other at right angle.

Now, in \triangle AOD and \triangle AOB, We have \angle AOD = \angle AOB [Each 90°]



AO = AO [Common]

OD = OB [∵ O is the midpoint of BD]

 $\triangle AOD \cong \triangle AOB$ [By SAS congruency]

 \Rightarrow AD = AB [By C.P.C.T.] ...(1)

Similarly, we have

AB = BC ... (2)

BC = CD ...(3)

CD = DA ...(4)

From (1), (2), (3) and (4), we have

AB = BC = CD = DA

... Quadrilateral ABCD have all sides equal.

In \triangle AOD and \triangle COB, we have

AO = CO [Given]

OD = OB [Given]

 \angle AOD = \angle COB [Vertically opposite angles]

So, $\triangle AOD \cong \triangle COB$ [By SAS congruency]

 \therefore \angle 1 = \angle 2 [By C.P.C.T.]

But, they form a pair of alternate interior angles.

∴ AD || BC

Similarly, AB || DC

- ∴ ABCD is a parallelogram.
- : Parallelogram having all its sides equal is a rhombus.
- ... ABCD is a rhombus.

Now, in $\triangle ABC$ and $\triangle BAD$, we have

AC = BD [Given]

BC = AD [Proved]

AB = BA [Common]

∴ ∆ABC ≅ ∆BAD [By SSS congruency]

 \therefore \angle ABC = \angle BAD [By C.P.C.T.](5)

Since, AD || BC and AB is a transversal.

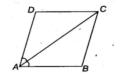
 \therefore ∠ABC + ∠BAD = 180° ...(6) [Co – interior angles]

$$\Rightarrow$$
 \angle ABC = \angle BAD = 90° [By(5) & (6)]

So, rhombus ABCD is having one angle equal to 90°.

Thus, ABCD is a square.

Q.6.Diagonal AC of a parallelogram ABCD bisects ∠A (see figure). Show that

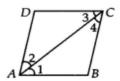


(i) it bisects ∠C also,

(ii) ABCD is a rhombus.

Solution:

We have a parallelogram ABCD in which diagonal AC bisects ∠A



(i) Since, ABCD is a parallelogram.

... AB || DC and AC is a transversal.

$$\therefore \angle 1 = \angle 3 ...(1)$$

[: Alternate interior angles are equal]

Also, BC | AD and AC is a transversal.

$$\therefore \angle 2 = \angle 4 ...(2)$$

[v Alternate interior angles are equal]

Also, $\angle 1 = \angle 2 ...(3)$

 $[: AC \text{ bisects } \angle A]$

From (1), (2) and (3), we have

$$\angle 3 = \angle 4$$

 \Rightarrow AC bisects \angle C.

(ii) In \triangle ABC, we have

 $\angle 1 = \angle 4$ [From (2) and (3)]

$$\Rightarrow$$
 BC = AB ...(4)

[: Sides opposite to equal angles of a Δ are equal]

Similarly, AD = DC(5)

But, ABCD is a parallelogram. [Given]

From (4), (5) and (6), we have

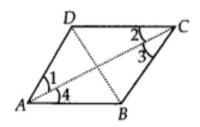
AB = BC = CD = DA

Thus, ABCD is a rhombus.

Q.7.ABCD is a rhombus. Show that diagonal AC bisects \angle Aas well as \angle C and diagonal BD bisects \angle B as well AS \angle D.

Solution:

Since, ABCD is a rhombus.



$$\Rightarrow$$
 AB = BC = CD = DA

Also, AB || CD and AD || BC

Now, CD = AD $\Rightarrow \angle 1 = \angle 2 \dots (1)$

[: Angles opposite to equal sides of a triangle are equal]

Also, AD | BC and AC is the transversal.

[: Every rhombus is a parallelogram]

$$\Rightarrow \angle 1 = \angle 3 \dots (2)$$

[: Alternate interior angles are equal]

From (1) and (2), we have

$$\angle 2 = \angle 3 ...(3)$$

Since, AB | DC and AC is transversal.

$$\therefore$$
 $\angle 2 = \angle 4 ...(4)$

[: Alternate interior angles are equal] From (1) and (4),

we have $\angle 1 = \angle 4$

 \therefore AC bisects \angle C as well as \angle A.

Similarly, we can prove that BD bisects $\angle B$ as well as $\angle D$.

Please wait for the next part... Thanks