Ex-8.1 solved exercise #### Quadrilaterals By- Ashish jha ## Q.4. Show that the diagonals of a square are equal and bisect each other at right angles. #### Solution: Let ABCD be a square such that its diagonals AC and BD intersect at O. (i) To prove that the diagonals are equal, we need to prove AC = BD. In \triangle ABC and \triangle BAD, we have AB = BA [Common] BC = AD [Sides of a square ABCD] \angle ABC = \angle BAD [Each angle is 90°] ∴ ∆ABC ≅ ∆BAD [By SAS congruency] AC = BD [By C.P.C.T.] ...(1) (ii) AD || BC and AC is a transversal. [: A square is a parallelogram] \therefore \angle 1 = \angle 3 [Alternate interior angles are equal] Similarly, $\angle 2 = \angle 4$ Now, in $\triangle OAD$ and $\triangle OCB$, we have AD = CB [Sides of a square ABCD] $\angle 1 = \angle 3$ [Proved] $\angle 2 = \angle 4$ [Proved] ∴ ∆OAD ≅ ∆OCB [By ASA congruency] \Rightarrow OA = OC and OD = OB [By C.P.C.T.] i.e., the diagonals AC and BD bisect each other at O.(2) (iii) In \triangle OBA and \triangle ODA, we have OB = OD [Proved] BA = DA [Sides of a square ABCD] OA = OA [Common] ∴ ∆OBA ≅ ∆ODA [By SSS congruency] - \Rightarrow \angle AOB = \angle AOD [By C.P.C.T.] ...(3) - ∴ ∠AOB and ∠AOD form a linear pair. - \therefore ∠AOB + ∠AOD = 180° - \therefore \angle AOB = \angle AOD = 90° [By(3)] - \Rightarrow AC \perp BD ...(4) From (1), (2) and (4), we get AC and BD are equal and bisect each other at right angles. ### Q.5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square. #### Solution: Let ABCD be a quadrilateral such that diagonals AC and BD are equal and bisect each other at right angle. Now, in \triangle AOD and \triangle AOB, We have \angle AOD = \angle AOB [Each 90°] AO = AO [Common] OD = OB [∵ O is the midpoint of BD] $\triangle AOD \cong \triangle AOB$ [By SAS congruency] \Rightarrow AD = AB [By C.P.C.T.] ...(1) Similarly, we have AB = BC ... (2) BC = CD ...(3) CD = DA ...(4) From (1), (2), (3) and (4), we have AB = BC = CD = DA ... Quadrilateral ABCD have all sides equal. In \triangle AOD and \triangle COB, we have AO = CO [Given] OD = OB [Given] \angle AOD = \angle COB [Vertically opposite angles] So, $\triangle AOD \cong \triangle COB$ [By SAS congruency] \therefore \angle 1 = \angle 2 [By C.P.C.T.] But, they form a pair of alternate interior angles. ∴ AD || BC Similarly, AB || DC - ∴ ABCD is a parallelogram. - : Parallelogram having all its sides equal is a rhombus. - ... ABCD is a rhombus. Now, in $\triangle ABC$ and $\triangle BAD$, we have AC = BD [Given] BC = AD [Proved] AB = BA [Common] ∴ ∆ABC ≅ ∆BAD [By SSS congruency] \therefore \angle ABC = \angle BAD [By C.P.C.T.](5) Since, AD || BC and AB is a transversal. \therefore ∠ABC + ∠BAD = 180° ...(6) [Co – interior angles] $$\Rightarrow$$ \angle ABC = \angle BAD = 90° [By(5) & (6)] So, rhombus ABCD is having one angle equal to 90°. Thus, ABCD is a square. ### Q.6.Diagonal AC of a parallelogram ABCD bisects ∠A (see figure). Show that (i) it bisects ∠C also, (ii) ABCD is a rhombus. #### Solution: We have a parallelogram ABCD in which diagonal AC bisects ∠A (i) Since, ABCD is a parallelogram. ... AB || DC and AC is a transversal. $$\therefore \angle 1 = \angle 3 ...(1)$$ [: Alternate interior angles are equal] Also, BC | AD and AC is a transversal. $$\therefore \angle 2 = \angle 4 ...(2)$$ [v Alternate interior angles are equal] Also, $\angle 1 = \angle 2 ...(3)$ $[: AC \text{ bisects } \angle A]$ From (1), (2) and (3), we have $$\angle 3 = \angle 4$$ \Rightarrow AC bisects \angle C. (ii) In \triangle ABC, we have $\angle 1 = \angle 4$ [From (2) and (3)] $$\Rightarrow$$ BC = AB ...(4) [: Sides opposite to equal angles of a Δ are equal] Similarly, AD = DC(5) But, ABCD is a parallelogram. [Given] From (4), (5) and (6), we have AB = BC = CD = DA Thus, ABCD is a rhombus. # Q.7.ABCD is a rhombus. Show that diagonal AC bisects \angle Aas well as \angle C and diagonal BD bisects \angle B as well AS \angle D. #### Solution: Since, ABCD is a rhombus. $$\Rightarrow$$ AB = BC = CD = DA Also, AB || CD and AD || BC Now, CD = AD $\Rightarrow \angle 1 = \angle 2 \dots (1)$ [: Angles opposite to equal sides of a triangle are equal] Also, AD | BC and AC is the transversal. [: Every rhombus is a parallelogram] $$\Rightarrow \angle 1 = \angle 3 \dots (2)$$ [: Alternate interior angles are equal] From (1) and (2), we have $$\angle 2 = \angle 3 ...(3)$$ Since, AB | DC and AC is transversal. $$\therefore$$ $\angle 2 = \angle 4 ...(4)$ [: Alternate interior angles are equal] From (1) and (4), we have $\angle 1 = \angle 4$ \therefore AC bisects \angle C as well as \angle A. Similarly, we can prove that BD bisects $\angle B$ as well as $\angle D$. Please wait for the next part... Thanks